
Quantification of bacterial replication rates (PTRs): A new perspective to study the dynamic role of microbes in IBD?

IBIRI LAB MEETING

Ashok Kumar Sharma Oct 21st, 2022 Casero and Devkota Lab The Inflammatory Bowel and Immunobiology Research Institute (IBIRI) Department of Gastroenterology Cedars Sinai Medical Center

Microbial states (enterotypes?)

Compositionality (a.k.a. normalization)

OCTOBER 21, IBIRI LAB MEETING

Reporting

Bacterial replication rates

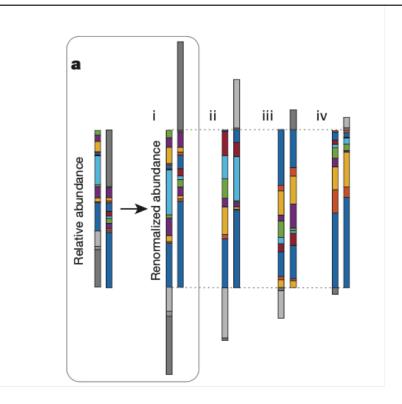
LETTER

doi:10.1038/nature18301

Reporting

Microbial

states


(enterotypes?)

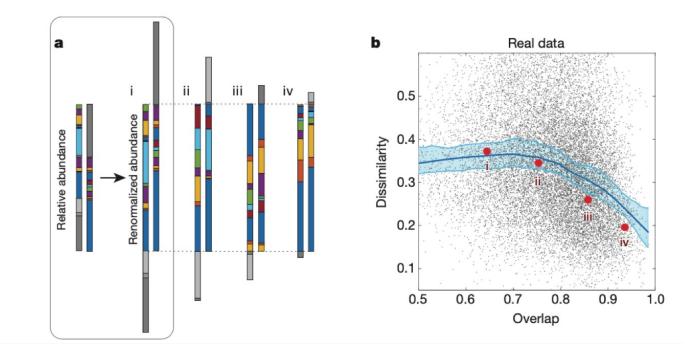
Compositionality

(a.k.a.

normalization)

Universality of human microbial dynamics

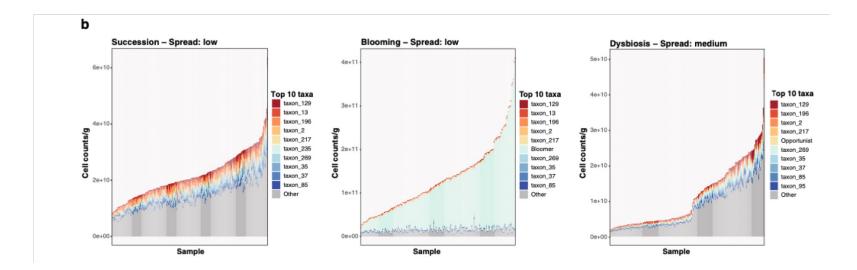
Bacterial replication rates


LETTER

doi:10.1038/nature18301

Universality of human microbial dynamics

 $Amir Bashan^1, Travis E. \ Gibson^1, Jonathan \ Friedman^2, Vincent J. \ Carey^1, Scott \ T. \ Weiss^1, Elizabeth \ L. \ Hohmann^3 \ \& \ Yang-Yu \ Liu^{1,4}$


RESEARCH LETTER

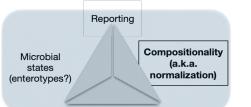
Microbial states (enterotypes?) Compositionality (a.k.a. normalization)

Bacterial replication rates

nature	
ARTICLE https://doi.org/10.1038/s41467-021-23821-6 OPEN	Check for updates
Benchmarking microbiome transformati experimental quantitative approaches to compositionality and sampling depth bi	o address
Verónica Lloréns-Rico 12, Sara Vieira-Silva 12, Pedro J. Gonçalves 3, Gwen Falon Jeroen Raes 12,483	ıy⊚ ^{1,2,4} &

Microbial states (enterotypes?)

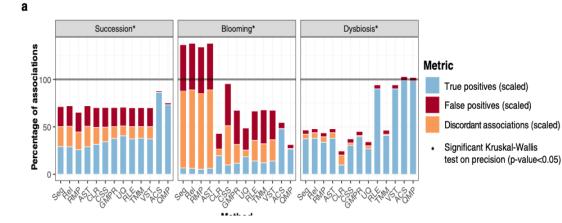
Bacterial replication rates

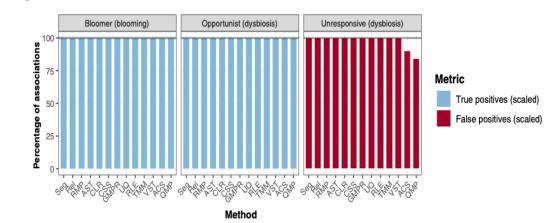

	Reporting	
Microbial states (enterotypes?)		Compositionality (a.k.a. normalization)

nature	
ARTICLE	Check for updates
Benchmarking microbiome transformations	favors
experimental quantitative approaches to ac compositionality and sampling depth biase	dress
Verónica Lloréns-Rico 12, Sara Vieira-Silva 12, Pedro J. Gonçalves 3, Gwen Falony 12.4 Jeroen Raes 12,483	&

Method	Abbreviation	Technique	Transformation	Correction	Rarefaction	Suited for richness calculations
Raw sequencing data	Seq	-	None	-	No	Yes
Relative abundance	Rel	Computational	Relative	Sequencing depth	No	No (0:1 range)
Relative microbiome profiling	RMP	Computational	Relative	Sequencing depth	Yes	Yes
Arcsine square root	AST	Computational	Relative	Sequencing depth	No	No (0:1 range)
Centered log ratio	CLR	Computational	Compositional	Sequencing depth and compositionality	No	No (negative values)
Cumulative sum scaling	CSS	Computational	Compositional	Sequencing depth and compositionality	No	Yes (rounding data)
Relative log expression	RLE	Computational	Compositional	Sequencing depth and compositionality	No	Yes (rounding data)
Upper quantile	UQ	Computational	Compositional	Sequencing depth and compositionality	No	Yes (rounding data)
Trimmed mean of m-values	TMM	Computational	Compositional	Sequencing depth and compositionality	No	Yes (rounding data)
Geometric mean of pairwise ratios	GMPR	Computational	Compositional	Sequencing depth and compositionality	No	Yes (rounding data)
Variance-stabilizing transformation	VST	Computational	Compositional	Sequencing depth and compositionality	No	No (negative values)
Quantitative microbiome profiling	QMP	Experimental	Quantitative	Sampling depth and microbial load	Yes	Yes
Absolute count scaling	ACS	Experimental	Quantitative	Microbial load	No	Yes

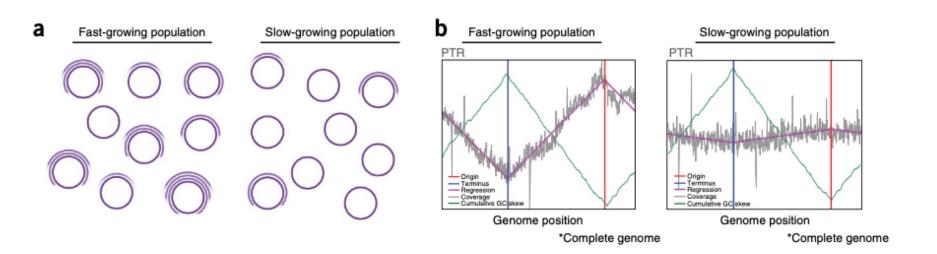
Methods are categorized based on the technique applied (computational or experimental), the biases targeted (sequencing depth, sampling depth, compositionality, and/or microbial load), the inclusion of a downsizing step, and their projected suitability for richness estimations. Additionally, for study purposes, methods are broadly labeled as relative, compositional, or quantitative methods.


Bacterial replication rates



Benchmarking microbiome transformations favors experimental quantitative approaches to address compositionality and sampling depth biases

Verónica Lloréns-Rico 1,2, Sara Vieira-Silva 12, Pedro J. Gonçalves 3, Gwen Falony 1,24 & Jeroen Raes 1,24 &

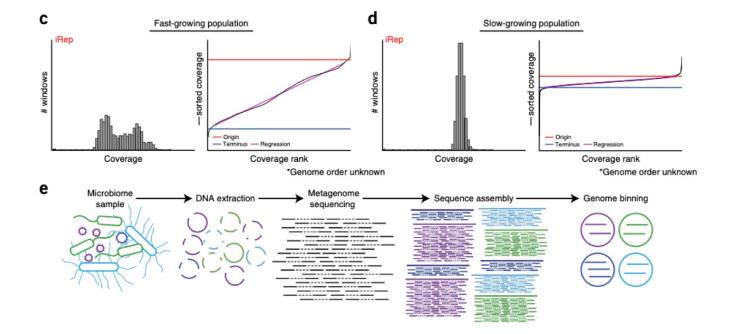


Bacterial replication rates

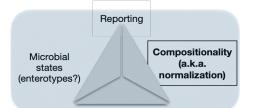
	Reporting	
Microbial states (enterotypes?)		Compositionality (a.k.a. normalization)

nature biotechnology				
Explore content $ \checkmark $ About the journal $ \checkmark $ Publish with us $ $				
nature > nature biotechnology > analyses > article				
Published: 07 November 2016				
Measurement of bacterial replication rates in microbial communities				

Christopher T Brown, Matthew R Olm, Brian C Thomas & Jillian F Banfield



Bacterial replication rates


	Reporting	
Microbial states (enterotypes?)		Compositionality (a.k.a. normalization)

nature biotech	nology
Explore content 👻 Abo	but the journal $ \!$
nature > nature biotechno	ology > analyses > article
Published: 07 November 2	<u>016</u>
Measurement communities	of bacterial replication rates in microbial

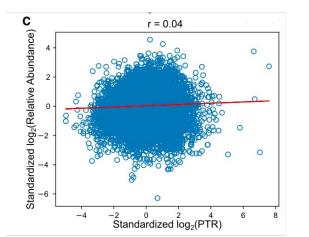
Christopher T Brown, Matthew R Olm, Brian C Thomas & Jillian F Banfield

Bacterial replication rates

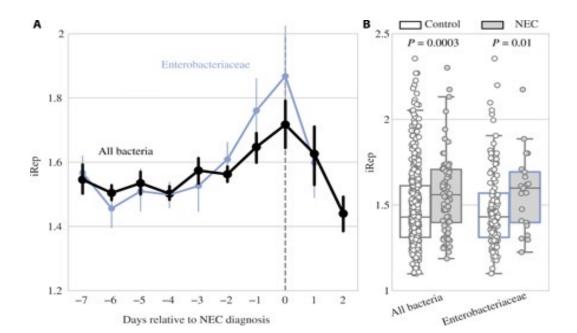
Accurate and robust inference of microbial growth dynamics from metagenomic sequencing reveals personalized growth rates

Tyler A. Joseph, Philippe Chlenski, Aviya Litman, et al.

Genome Res. published online January 5, 2022

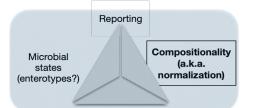

Science Advances | MAAAS

SIGNIFICANT RESEARCH, GLOBAL IMPACT


<u>Sci Adv.</u> 2019 Dec; 5(12): eaax5727. Published online 2019 Dec 11. doi: <u>10.1126/sciadv.aax5727</u> PMCID: PMC6905865 PMID: <u>31844663</u>

Necrotizing enterocolitis is preceded by increased gut bacterial replication, *Klebsiella*, and fimbriae-encoding bacteria

Matthew R. Olm,¹ Nicholas Bhattacharya,² Alexander Crits-Christoph,¹ Brian A. Firek,³ Robyn Baker,⁴ Yun S. Song,^{5,6,7} Michael J. Morowitz,³ and Jillian F. Banfield^{7,8,9,10,*}


(C) Correlation between standardized log2(PTR) and log2(relative abundance) on species matched to relative abundances estimated with MetaPhIAn2.

OCTOBER 21, IBIRI LAB MEETING

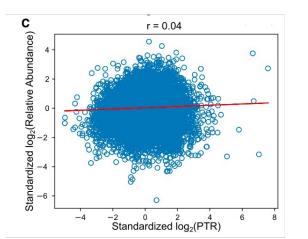
S

Bacterial replication rates

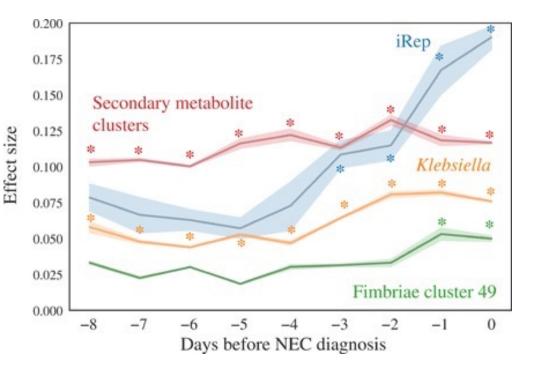
Accurate and robust inference of microbial growth dynamics from metagenomic sequencing reveals personalized growth rates

Tyler A. Joseph, Philippe Chlenski, Aviya Litman, et al.

Genome Res. published online January 5, 2022


Science Advances MAAAS

SIGNIFICANT RESEARCH, GLOBAL IMPACT

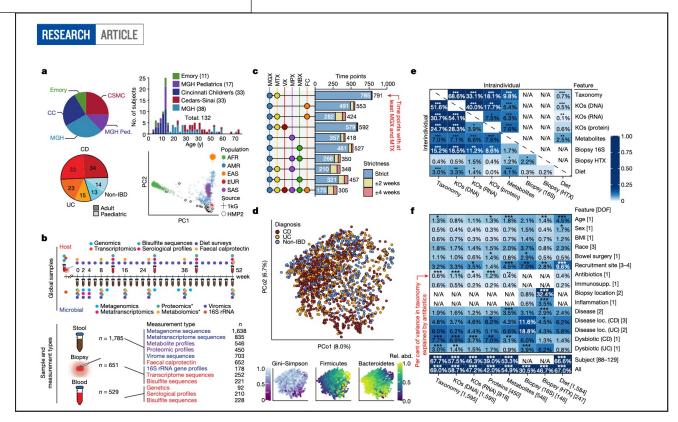

<u>Sci Adv.</u> 2019 Dec; 5(12): eaax5727. Published online 2019 Dec 11. doi: <u>10.1126/sciadv.aax5727</u> PMCID: PMC6905865 PMID: <u>31844663</u>

Necrotizing enterocolitis is preceded by increased gut bacterial replication, *Klebsiella*, and fimbriae-encoding bacteria

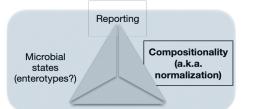
Matthew R. Olm,¹ Nicholas Bhattacharya,² Alexander Crits-Christoph,¹ Brian A. Firek,³ Robyn Baker,⁴ Yun S. Song,^{5,6,7} Michael J. Morowitz,³ and Jillian F. Banfield^{7,8,9,10,*}

(C) Correlation between standardized log2(PTR) and log2(relative abundance) on species matched to relative abundances estimated with MetaPhIAn2.

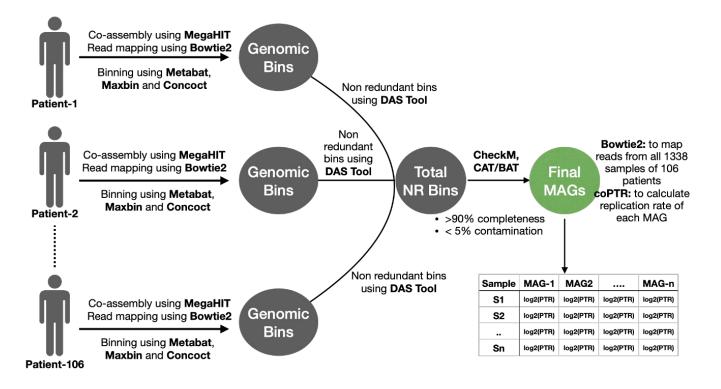
S

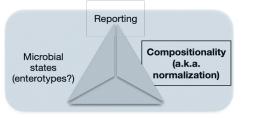

Bacterial replication rates

ARTICLE


OPEN https://doi.org/10.1038/s41586-019-1237-9

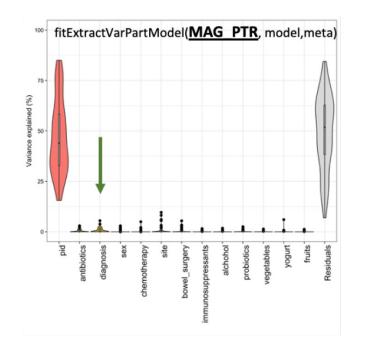
Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases

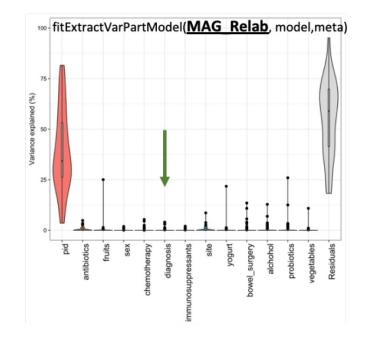

Jason Lloyd-Price^{1,2}, Cesar Arze², Ashwin N. Ananthakrishnan³, Melanie Schirmer^{1,3}, Julian Avlin-Pacheco⁴, Tiffany W. Poon¹, Elizabeth Andrews³, Nadim J. Ajami⁵, Kevin S. Bonham^{1,2}, Colin J. Brislawn⁶, David Casero⁷, Holly Courtney³, Antonio Gonzalez⁸, Thomas G. Graeber⁹, A. Brantley Hall¹, Kathleen Lake^{0,9}, Carol J. Landers¹¹, Himel Mallick^{1,2}, Damian R. Plichta¹, Mahadev Prasad¹², Gholamali Kahnavard^{1,2}, Jenny Sauk³¹, Dimitry Shungin^{1,1,4}, Yoshiki Vazquez-Bazza^{15,18}, Richard A. White III⁶, IBDMDB Investigators⁷¹, Jonethan Brauri, Lee A. Denson^{10,6}, Janet K. Jansson⁶, Rob Knight^{1,8,15,19}, Subra Kugathasan¹², Dermot P. B. McGoren¹¹, Joseph F. Petrosino⁵, Thaddeus S. Stappenbeck²⁰, Haral and S. Winter^{1,2,2} Clary B. Clish⁴, Eric A. Franzoss², Hera Vlamaki⁵, Ramith, J. Xavier^{1,2,13,14}& Curtis Huttenhower^{1,2,24}s⁴

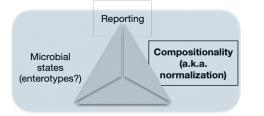


Microbial states (enterotypes?)

Methodology- to construct metagenome-assembled genomes (MAGs) and compute PTR

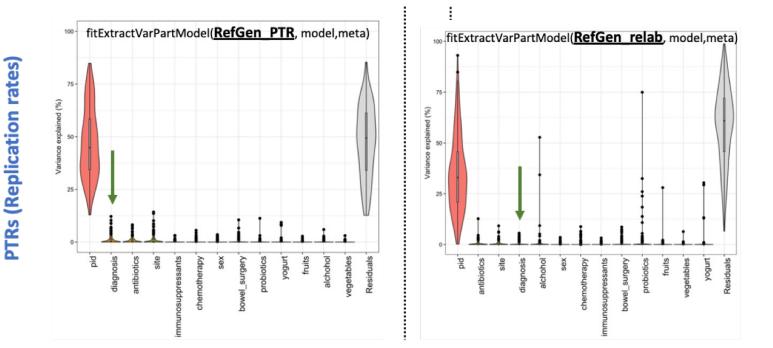




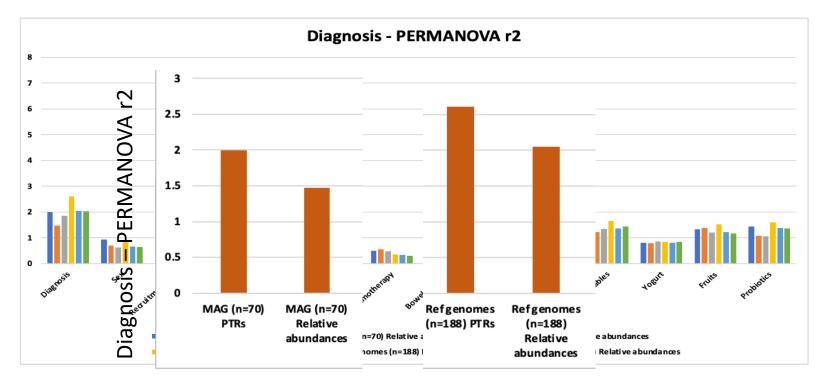

PCoA and Variance partition analysis: Replication rates vs Relative abundances of MAGs

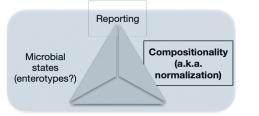
model <- ~

(1|diagnosis)+(1|sex)+(1|site)+(1|alchohol)+(1|antibiotics)+(1|immunosuppressants)+(1|chemotherapy)+(1|bowel_surgery)+(1|vegetables)+(1|probiotics)+(1|yogurt)+(1|fruits)+(1|pid)



Relative Abundances


PCoA and Variance partition analysis: Replication rates vs Relative abundances of Reference genomes

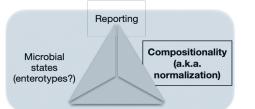

model <- ~

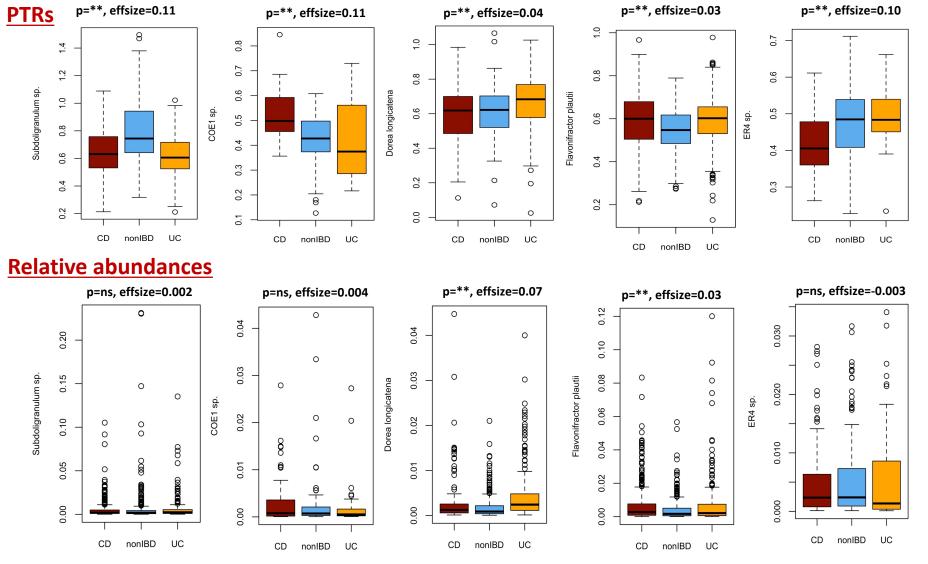
 $(1|diagnosis)+(1|sex)+(1|site)+(1|alchohol)+(1|antibiotics)+(1|immunosuppressants)+(1|chemotherapy)+(1|bow el_surgery)+(1|vegetables)+(1|probiotics)+(1|yogurt)+(1|fruits)+(1|pid)$

PTR estimates showed better association with clinical phenotypes as compared to relative abundances

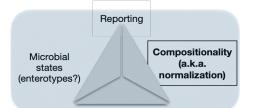
Top ten Reference Genomes associated with disease phenotype

PTRs

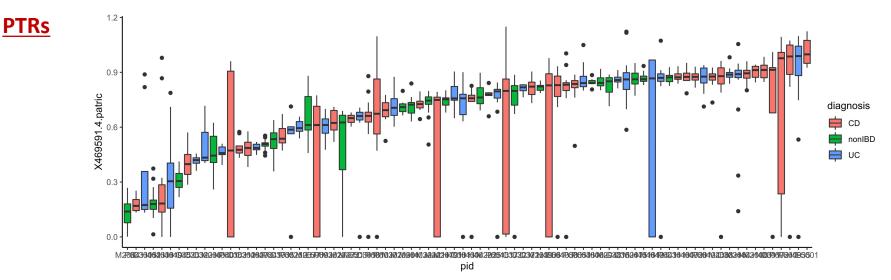

Gid	Таха	Diagnosis
ERS473051_14	Lachnospiraceae sp.	0.12
X742821.3	Sutterella wadsworthensis	0.10
ERS537236_4	Alistipes sp.	0.09
ERS608495_69	UBA11524 sp.	0.09
X445970.5	Alistipes putredinis	0.07
SRS077849_38	Lachnospiraceae sp.	0.07
ERS473414_25	DTU089 sp.	0.07
ERS537221_53	Lachnospira sp.	0.07
X349741.6	Akkermansia muciniphila	0.06
ERS473219_31	Lachnospiraceae sp.	0.06

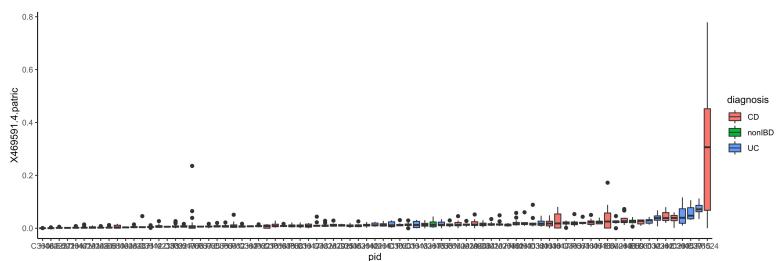

Relative abundances

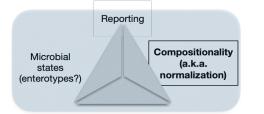
Gid	Таха	Diagnosis
ERS473051_14	Lachnospiraceae sp.	0.05
ERS473414_25	DTU089 sp.	0.05
ERS537236_4	Alistipes sp.	0.06
ERS608495_69	UBA11524 sp.	0.05
SRS475574_7	D16 HGM13112	0.04
X1034346.3	Dielma sp.	0.04
X1262951.3	Blautia sp.	0.04
X59620.57	Lachnospiraceae sp.	0.06
X665951.3	Ruminococcus torques	0.04
X742821.3	Sutterella wadsworthensis	0.04


- 4/10 reference genomes were found by both PTR and Relative abundances which shows significant association to Diagnosis
- For each genome PTRs shows higher variance as compared to relative abundances

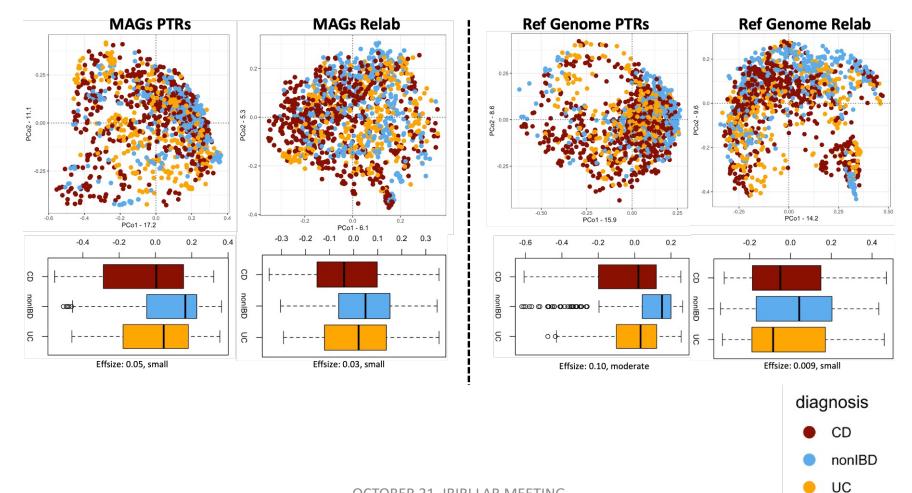
Bacterial replication rates



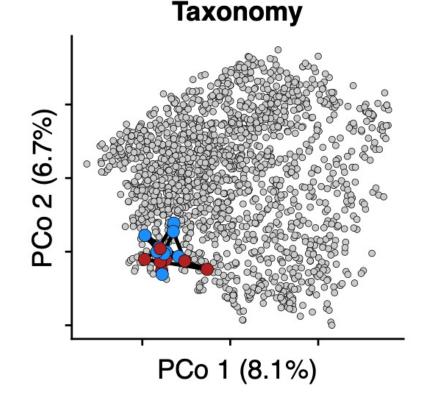

Bacterial replication rates



Parabacteroides distasonis



Relative abundances



PCoA: PTRs vs Relative abundances

MetaPhIn relative abundances

A 'reference set' of samples was constructed from **non-IBD subjects** by taking all samples

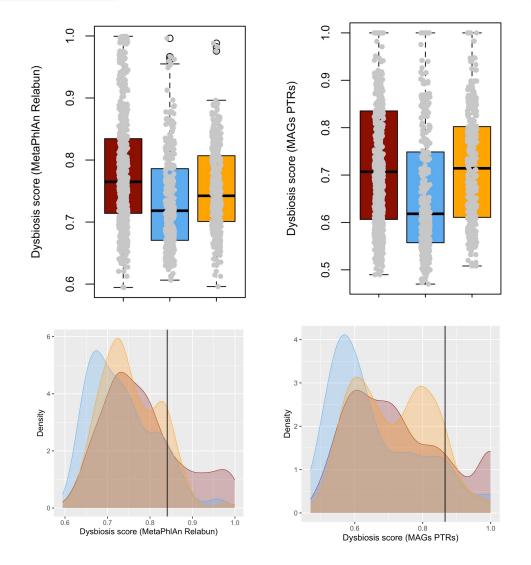
Microbial

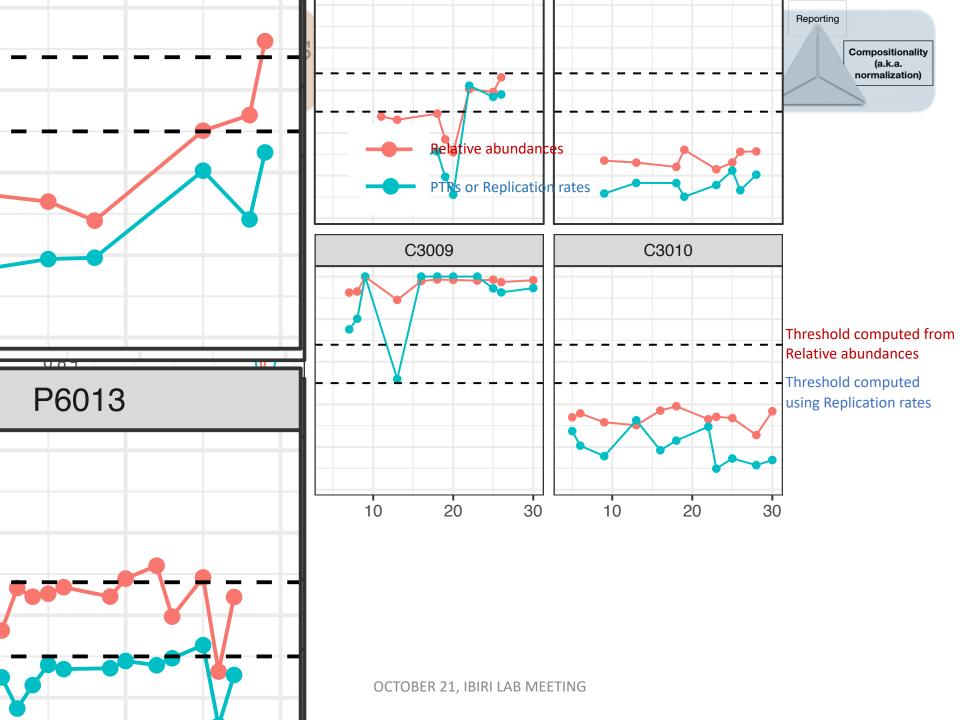
states

(enterotypes?)

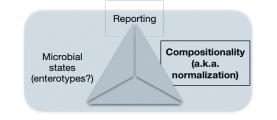
Reporting

Compositionality

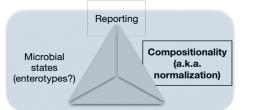

(a.k.a.

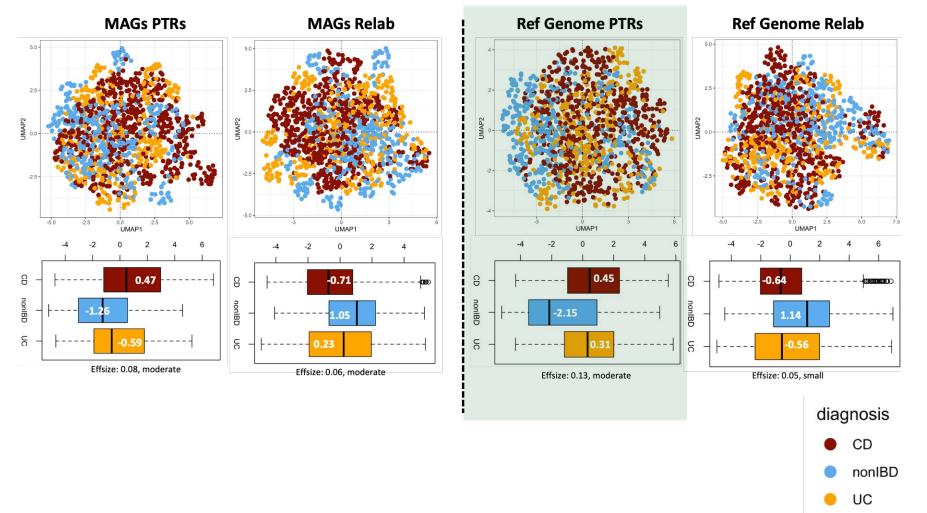

normalization)

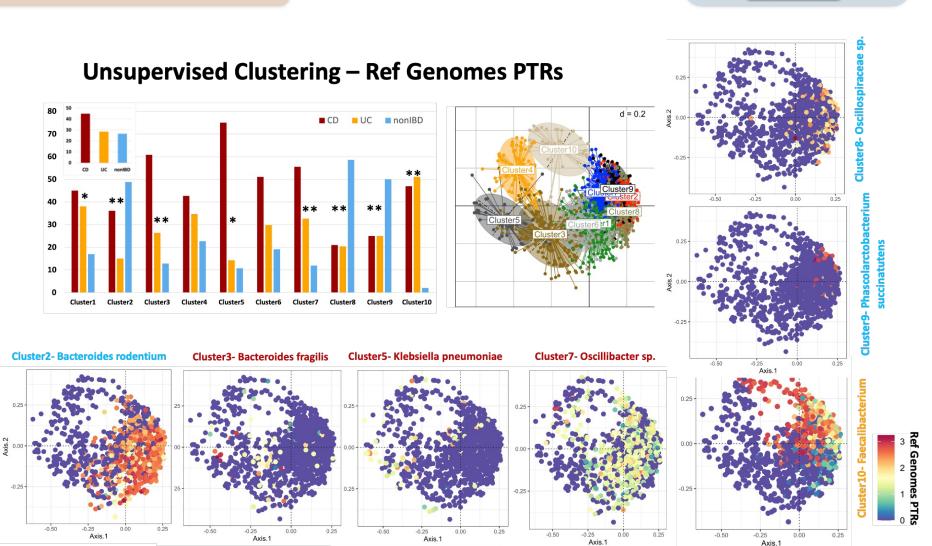
The <u>dysbiosis score</u> of a given sample was then defined as the median Bray– Curtis dissimilarity to this **reference sample set**


Divergent samples were identified – using a **dysbiotic threshold** at the 90th percentile of this score for non-IBD samples

Jason Lloyd-Price et. Al. 2019, Nature

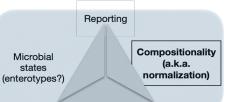

OBSERVATION

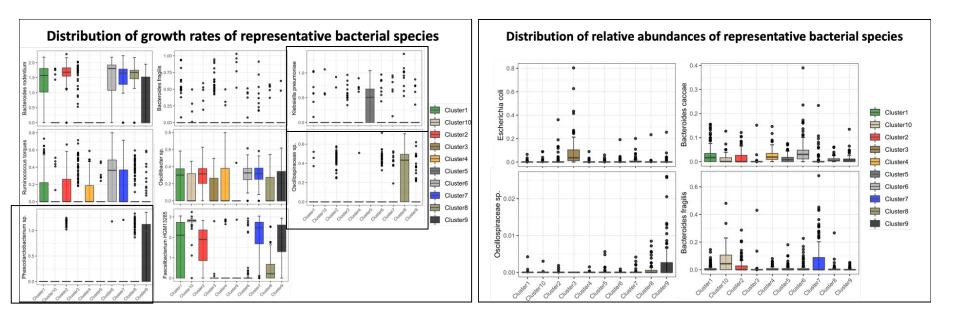



Uniform Manifold Approximation and Projection (UMAP) Reveals Composite Patterns and Resolves Visualization Artifacts in Microbiome Data

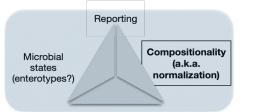
George Armstrong,^{a,b,c} ^(b)Cameron Martino,^{a,b,c} Gibraan Rahman,^{a,c} Antonio Gonzalez,^a Yoshiki Vázquez-Baeza,^b Gal Mishne,^{d,e} ^(b)Rob Knight^{a,e,f}

^aDepartment of Pediatrics, School of Medicine, University of California, San Diego, California, USA ^bCenter for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA ^cBioinformatics and Systems Biology Program, University of California, San Diego, California, USA ^dHalıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, California, USA ^eDepartment of Computer Science and Engineering, University of California, San Diego, La Jolla, California, USA ^fDepartment of Bioengineering, University of California, San Diego, La Jolla, California, USA




OCTOBER 21, IBIRI LAB MEETING

Microbial analysis Bacterial replication rates



OCTOBER 21, IBIRI LAB MEETING

Association of cluster specific taxonomic markers with disease phenotype – **Ongoing**

Microbial analysis Bacterial replication rates

Microbial states – trajectory analysis

Microbial states (enterotypes?)

diagnosis

-2

0

Component 1

2

4

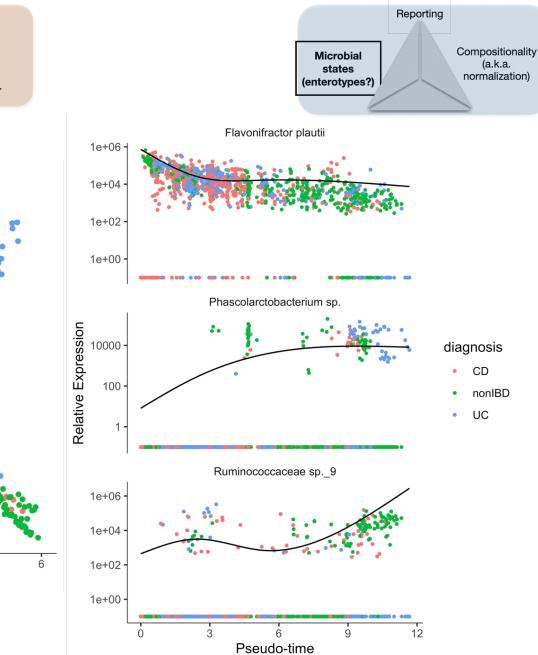
4

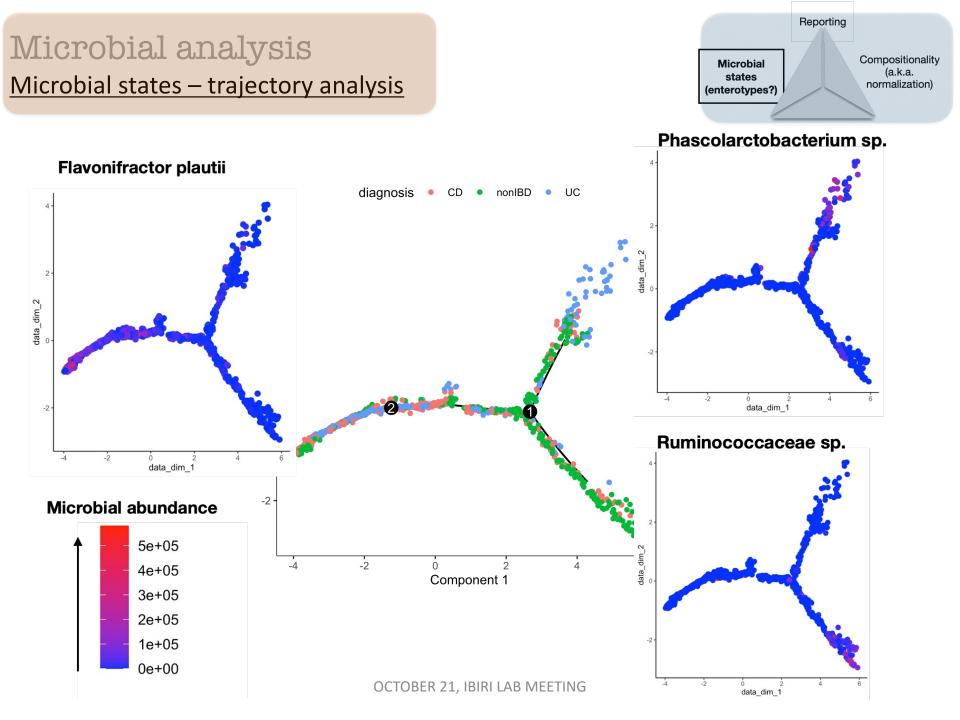
2

0

-2

-4

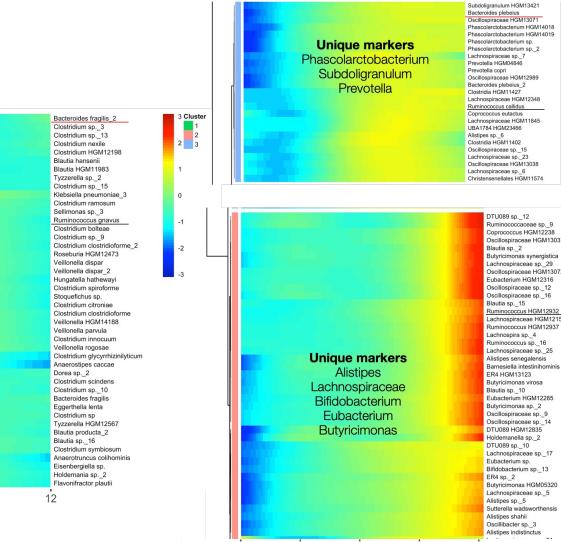

Component 2


Microbial states – trajectory analysis

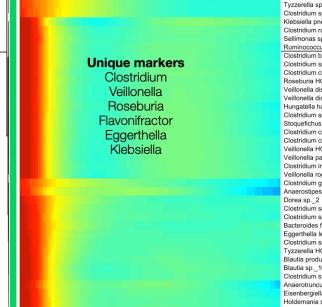
CD •

nonIBD

UC



Microbial states – trajectory analysis


Microbial states (enterotypes?)

Reporting

Compositionality (a.k.a. normalization)

0

6

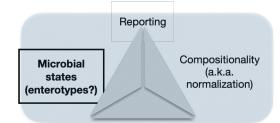
Pseudo-time

3

0

OCTOBER 21, IBIRI LAB MEETING

9


6 Pseudo-time

3

9

12

Ruminococcaceae sp. 9 Coprococcus HGM12238 Oscillospiraceae HGM13037 Butyricimonas synergistica Lachnospiraceae sp. 29 Oscillospiraceae HGM13072 Eubacterium HGM12316 Oscillospiraceae sp. 12 Oscillospiraceae sp._16 Ruminococcus HGM12932 Lachnospiraceae HGM12151 Ruminococcus HGM12937 Ruminococcus sp._16

Summary

- It is possible to identify informative bacterial features under the constrains of low prevalence
- Identified features allow the definition of continuous enterotypes

Ongoing

- Longitudinal analyses of replication rates (association with phenotypes/treatments)
- More data (RISK, SPARC-IBD, 1000IBD, population data)

Acknowledgements

Dr. David Casero Dr. Suzanne Devkota Dr. Jonathan Braun Dr. Ivan Vujkovic-Cvijin Inflammatory Bowel & Immunobiology Research Institute Team (IBIRI)

